Black hole: A new heuristic optimization approach for data clustering
نویسنده
چکیده
0020-0255/$ see front matter 2012 Elsevier Inc http://dx.doi.org/10.1016/j.ins.2012.08.023 ⇑ Address: Islamic Azad University, Khoy Branch, E-mail addresses: [email protected], hatam Nature has always been a source of inspiration. Over the last few decades, it has stimulated many successful algorithms and computational tools for dealing with complex and optimization problems. This paper proposes a new heuristic algorithm that is inspired by the black hole phenomenon. Similar to other population-based algorithms, the black hole algorithm (BH) starts with an initial population of candidate solutions to an optimization problem and an objective function that is calculated for them. At each iteration of the black hole algorithm, the best candidate is selected to be the black hole, which then starts pulling other candidates around it, called stars. If a star gets too close to the black hole, it will be swallowed by the black hole and is gone forever. In such a case, a new star (candidate solution) is randomly generated and placed in the search space and starts a new search. To evaluate the performance of the black hole algorithm, it is applied to solve the clustering problem, which is a NP-hard problem. The experimental results show that the proposed black hole algorithm outperforms other traditional heuristic algorithms for several benchmark datasets. 2012 Elsevier Inc. All rights reserved.
منابع مشابه
Comparison of the Accuracy of Black Hole Algorithms and Gravitational Research and the Hybrid Method in Portfolio Optimization
The main purpose of this research is portfolio optimization in Tehran securities exchange using the black hole algorithm and the Gravitational Research algorithm. We also propose an algorithm named Hybrid Algorithm which combines the two algorithms above to cover the weaknesses of these two algorithms. Finally we compare the results with the Markowitz model and choose the optimal algorithm.<br ...
متن کاملImproved Automatic Clustering Using a Multi-Objective Evolutionary Algorithm With New Validity measure and application to Credit Scoring
In data mining, clustering is one of the important issues for separation and classification with groups like unsupervised data. In this paper, an attempt has been made to improve and optimize the application of clustering heuristic methods such as Genetic, PSO algorithm, Artificial bee colony algorithm, Harmony Search algorithm and Differential Evolution on the unlabeled data of an Iranian bank...
متن کاملSolving Data Clustering Problems using Chaos Embedded Cat Swarm Optimization
In this paper, a new method is proposed for solving the data clustering problem using Cat Swarm Optimization (CSO) algorithm based on chaotic behavior. The problem of data clustering is an important section in the field of the data mining, which has always been noted by researchers and experts in data mining for its numerous applications in solving real-world problems. The CSO algorithm is one ...
متن کاملSolving Data Clustering Problems using Chaos Embedded Cat Swarm Optimization
In this paper, a new method is proposed for solving the data clustering problem using Cat Swarm Optimization (CSO) algorithm based on chaotic behavior. The problem of data clustering is an important section in the field of the data mining, which has always been noted by researchers and experts in data mining for its numerous applications in solving real-world problems. The CSO algorithm is one ...
متن کاملA Multi-Objective Approach to Fuzzy Clustering using ITLBO Algorithm
Data clustering is one of the most important areas of research in data mining and knowledge discovery. Recent research in this area has shown that the best clustering results can be achieved using multi-objective methods. In other words, assuming more than one criterion as objective functions for clustering data can measurably increase the quality of clustering. In this study, a model with two ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Inf. Sci.
دوره 222 شماره
صفحات -
تاریخ انتشار 2013